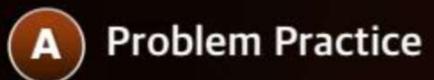
JHE 2026

Mathematics

Basic Maths

Lecture -06

By – Ashish Agarwal Sir (IIT Kanpur)



Algebraic Identities

Laws of Exponent

Homework Discussion

If $81x^5 + 27x^3 - 9x^2 + 50$ is divided by (3x + 2) then remainder is λ then

$$(\mathbf{A})$$

$$\frac{3\lambda-42}{10}$$
 is equal to 4

С

if $\lambda = \frac{p}{q}$ then (p + q) is divisible by 17 (where p & q are coprime)

 λ is a natural number

D
$$\left(\lambda - \frac{1}{3}\right)$$
 is divisible by 3

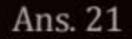
Ans. A, B, D

Let $f(x) = x^{135} + x^{125} - x^{115} + x^5 + 1$. If f(x) is divided by $x^3 - x$ then the remainder is some function of x say g(x). Find the value of g(10).

$$f(x) = (x^{3}-x) \cdot Q(x) + ax^{2}+bx+c$$

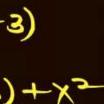
$$f(x) = x(x-1)(x+1) + ax^{2}+bx+c$$

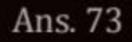
$g(x) = ax^2 + bx + C$



If p(x) is a polynomial of 3 degree for which p(1) = 1, p(2) = 4, p(3) = 9 then find the value of p(5) and leading coefficient be 2.

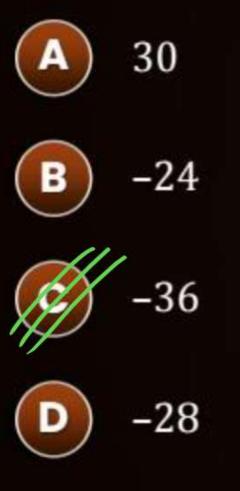
> degree 3 $g(x) = P(x) - x^2$ g(1) = g(2) = g(3) = 0g(x) = d(x-1)(x-2)(x-3) $P(x) - x^2 = Q(x-1)(x-2)(x-3)$ $P(x) = 2(x-1)(x-2)(x-3) + x^{2}$





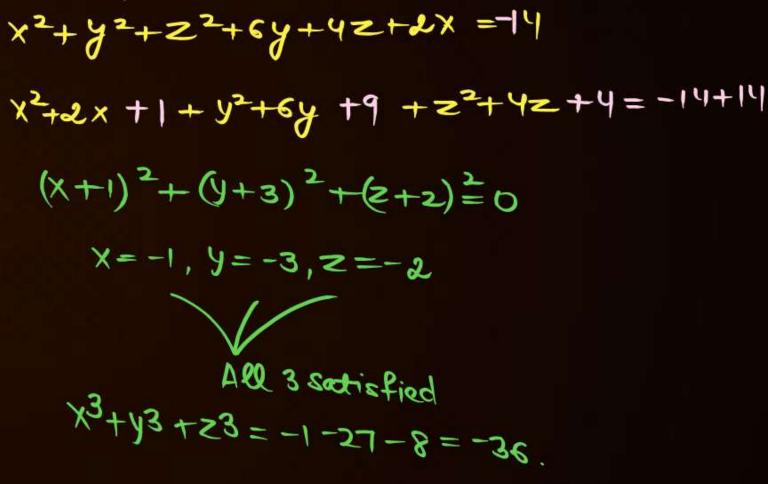
Aao Machaay Dhamaal Deh Swaal pe Deh Swaal

Three real numbers x, y, z are such that $\dot{x}^2 + 6y = -17$, $y^2 + 4z = 1$ and $z^2 + 2x = 2$. Then the value of $x^3 + y^3 + z^3$ is equal to

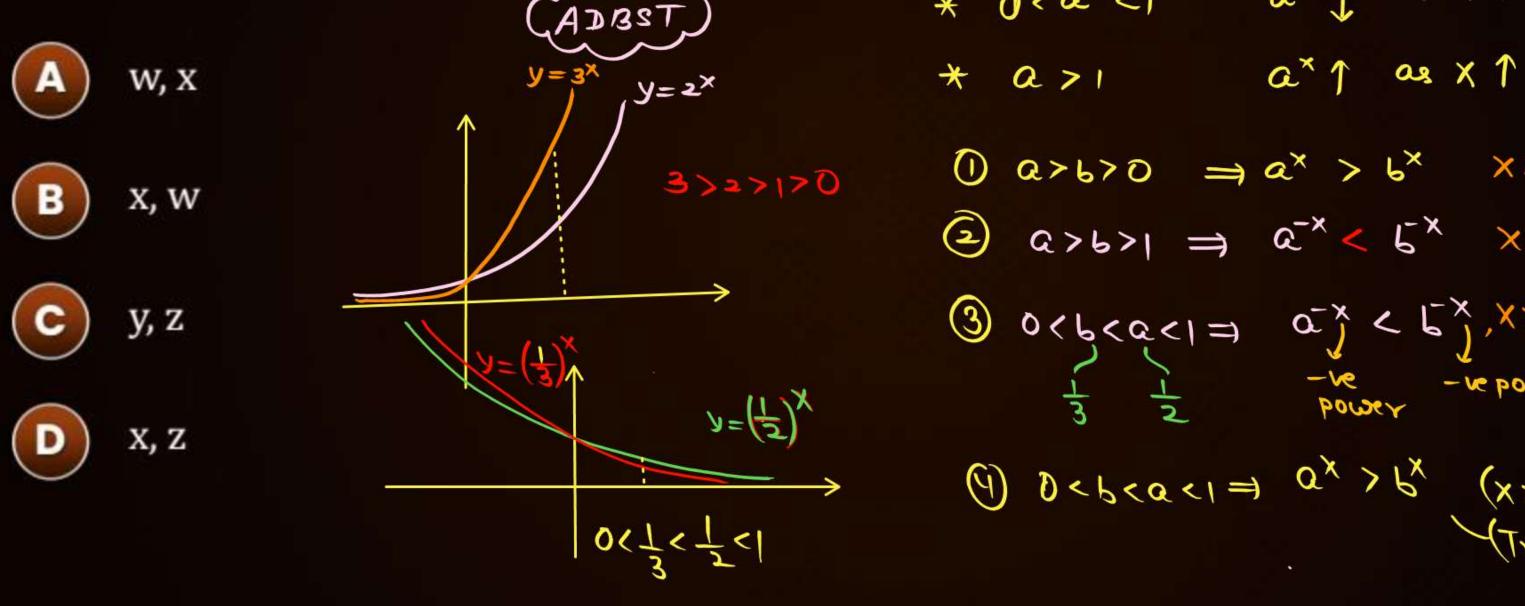


y2+ 2.3.7

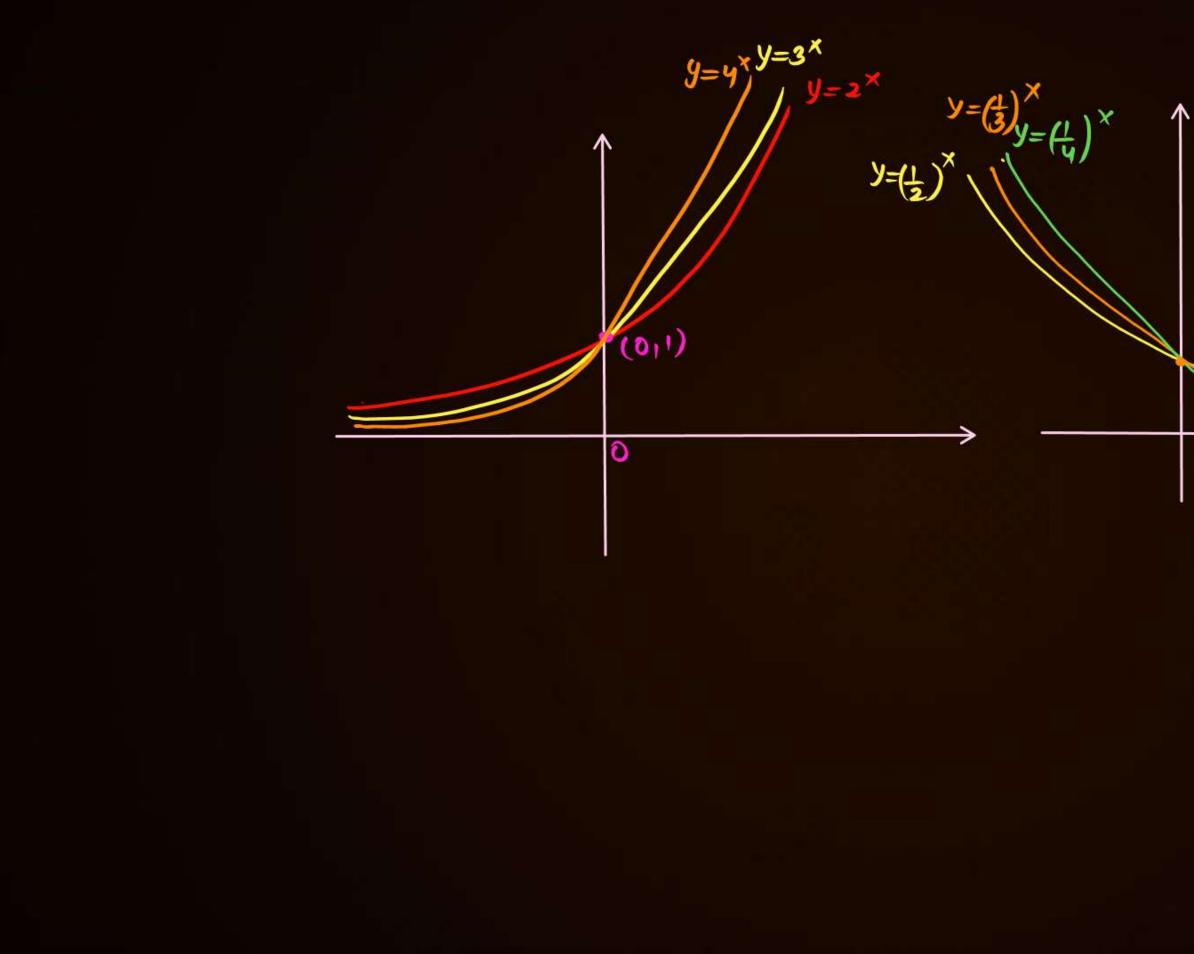
X=-1, Y=-3, Z=-2



Suppose that $w = 2^{1/2}$, $x = 3^{1/3}$, $y = 6^{1/6}$ and $z = 8^{1/8}$. From among these number list, the biggest, second biggest numbers are



- * 0 < a < 1 $a^{*} \downarrow a_{*} \times 1$
 - () a>670 = a × > 6 × ×>0-(True)
 - (a) $a>b>1 \Rightarrow a^{-x} < b^{x} \times b^{-1}me$
 - (3) $0 < b < a < 1 \Rightarrow a < b < x < b < x > 0 True$ $<math>\frac{1}{3} = \frac{1}{2} = \frac{1$
 - (1) $D < b < a < 1 = a^{x} > b^{x}$ (x>0) (True)

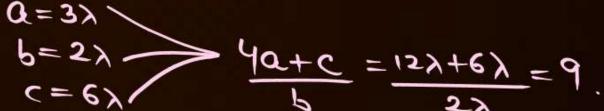


(0,1)

d(m(1,2,3)=6

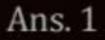
If a, b & c are three non zero real numbers such that $4a^2 + 9b^2 + c^2 - 6ab - 3bc - 2ca = 0$ then the value of (4a + c)/b is equal to

> $4a^2 + 9b^2 + c^2 - 6ab - 3bc - 2ca = 0$ $(2a)^{2} + (3b)^{2} + (2 - 2a \cdot 3b - 3b \cdot c - c \cdot 2a = 0$ $2q=3b=C=G\lambda$



If a, b, $c \in R$ then find the minimum value of $E = a^2 + 9b^2 + 25c^2 + 2a + 6b - 10c + 20$. $E = a^2 + 2a + 9b^2 + 6b + 25c^2 - 10c + 20$ $E = a^{2} + 2a + 1^{2} + (3b)^{2} + 2 \cdot 3b \cdot 1 + 1^{2} + (5c)^{2} - 2 \cdot 5c \cdot 1 + 1^{2} + 20 - 3$ $= (a+1)^{2} + (3b+1)^{2} + (5c-1)^{2} + 17$ $= (a+1)^{2} + (3b+1)^{2} + (5c-1)^{2} + 17$ $E_{min} = 17$ at a = -16=-1/2 C= 12

The number of real number pairs (x, y) which will satisfy the equation $x^{2} - xy + y^{2} = 4(x + y - 4)$ is



If α , β and γ are roots of cubic equation $x^3 + 3x - 1 = 0$ then find value of: $x^3+3x-1 \leftarrow \beta$ (i) $(2 - \alpha)(2 - \beta)(2 - \gamma)$ (iii) $(3 + \alpha)(3 + \beta)(3 + \gamma)$ $x^{3}+3x-1=(x-\alpha)(x-\beta)(x-r)$ (iii) $(4 - \alpha^2)(4 - \beta^2)(4 - \gamma^2)$ for (i) put x = 2(iv) $(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2)$ for (ii) put X=-3 for (iii) fut x = 2 $(2 - \alpha) (2 - \beta) (2 - 1) = 13$ (1) put X=-2 $(-2-\alpha)(-2-\beta)(-2-\gamma) = -15$ $(2+\alpha)(2+\beta)(2+\gamma)=15.$ $(y-x^2)(y-\beta^2)(y-\gamma^2) = 195 \text{ Ans}.$

$-27 - 9 - 1 = (-3 - \alpha)(-3 - \beta)(-3 - 1)$ $-37 = -(3+\infty) - (3+\beta) - (3+\gamma)$ $-37 = -(3+\alpha)(3+\beta)(3+\gamma)$ $(3+\alpha)(3+\beta)(3+1)=37$

 $\chi^{2} - (iy)^{2} = (x+iy)(x-iy)$ $\chi^2 + \chi^2 =$ $1+a^2 = (1+ia)(1-ia) = (a+i)(a-i)$ or (iv) , sut x=-i

but r = i

 $(i^{3}+3i-1=(i-\alpha)(i-\beta)(i-\beta)(i-r) \Rightarrow 2i-1=(i-\alpha)(i-\beta)(i-r)-0$ +i $(i+\alpha)^{3} - i = (i-\alpha)(-(i-\beta)(-(i-\gamma)) = -2i - i = -(i+\alpha)(i+\beta)(i+\gamma)$

 $2i+1=(i+\alpha)(i+\beta)(i+\gamma))$ $(a_i)^2 = (i^2 + a^2)(i^2 - \beta^2)(i^2 + \gamma^2)$ $-5 = -(1+\alpha^2) - 1 \cdot (1+\beta^2) - 1(1+\gamma^2)$ $(1+\alpha_{5})(1+\beta_{5})(1+\lambda_{5})=2$

 $(-i)^{3} = -ix - ix - i = -(ix ix i) = i$ $(2i)^2 = 2i \times 2i = 4 \times i^2 = 4 \times -1 = -4$

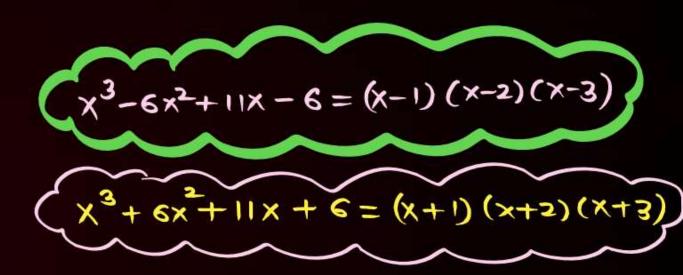
 $i = J - I \Rightarrow i^2 = -1$ $i^3 = i \times i \times i = -i$

F

Factorization of Polynomial

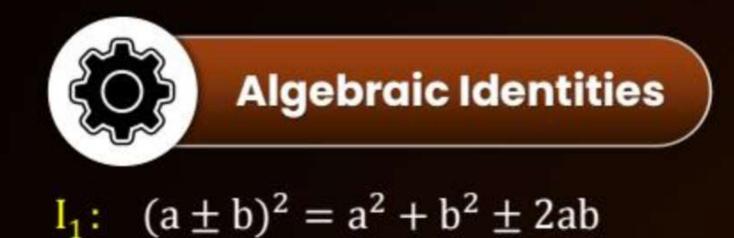
 $E_{x}: P(x) = \chi^{3} - 6x^{2} + 11x - 6$

 $P(x) = x^{2}(x-1) - 5x(x-1) + 6(x-1)$ = (x-1) (x²-5x+6) = (x-1) (x²-3x-2x+6) = (x-1) (x-3)(x-2)



$P(1) = 1 - 6 + 11 - 6 = 0 \implies (x - 1)$ is a factor

Factorize the following ah 02 $x^3 - 13x - 12$ (i) [Ans. (x + 1)(x - 4)(x + 3)] (ii) $x^3 - 7x - 6$ [Ans. (x + 2)(x - 3)(x + 1)] (iii) $x^3 - 6x^2 + 11x - 6$ [Ans. (x - 1)(x - 2)(x - 3)] (iv) $2x^3 + 9x^2 + 10x + 3$ [Ans. (x + 1)(x + 3)(2x + 1)] $x^3 - 9x^2 + 23x - 15$ (v)[Ans. (x - 1)(x - 3)(x - 5)] P(1) = 2 - 9 + 13 - 6 = 0(vi) $2x^3 - 9x^2 + 13x - 6$ [Ans. (x - 1)(x - 2)(2x - 3)] $ax^{2}(x-1) - Tx(x-1) + 6(x-1)$ (vii) $x^3 - 4x^2 + 5x - 2$ [Ans. $(x-2)(x-1)^2$] (2x2-7x+6) (x-1) (2x= 4x-3x+6) (X-1) (2x-3)(x-2)(x-1)



$$l_{a}: a^{2} - b^{2} = (a - b)(a + b)$$

$$I_3: a^3 + b^3 = (a + b)(a^2 - ab + b^2) = (a + b)^3 - 3ab(a + b)$$

 $I_4: a^3 - b^3 = (a - b)(a^2 + ab + b^2) = (a - b)^3 + 3ab(a - b)$

$$I_{5}: (a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)$$

$$I_{6}: (a - b)^{3} = a^{3} - b^{3} - 3ab(a - b)$$

$$I_{7}: (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + bc)$$

$$= a^{2} + b^{2} + c^{2} + 2abc(1/a + 1/b + 1/c)$$

$$I_{8}: (a + b + c)^{3} = a^{3} + b^{3} + c^{3} + 3(a + b)(b + c)(c + a)$$

$$I_{9}: a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - b)$$

$bc - ca) \bigstar \bigstar \bigstar \bigstar$

Q, b, CER

$a^{3}+b^{3}+c^{3}-3abc = (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$

 $if a+b+c=0 \quad then \ a^3+b^3+c^3=3abc \quad (True | False)$ Si: $S_2: 1f a_3 + b_3 + c_3^3 = 3abc then a + b + c = 0$ (True | False)

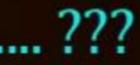
> $Q^3 + b^3 + (3 = 3abc)$ 03 + 63 + (3 - 3abc = 0) $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0$ $a+b+c=0 \text{ or } a^2+b^2+c^2-ab-bc-ca=0$ a=b=c $a^3+b^3+c^3=3abc \iff a+b+c=0 \text{ or } a=b=c$ **********

$(a+b+c)^{2} = a^{2}+b^{2}+c^{2}+c^{2}+a(ab+bc+ca)$ $(a+b+c+d)^{2} = a^{2}+b^{2}+c^{2}+c^{2}+d^{2}+2(ab+ac+ad+bc+bd+cd)$ Sum of products faken two at a time

 $(a_1 + a_2 + - +a_n)^2 = a_1^2 + a_2^2 + a_3^2 + - - + a_n^2 + 2(a_1a_2 + a_1a_3 + a_1a_3 + a_1a_2 +$ - - + an an

 $(a-b+c)^2 = a^2+b^2+c^2-2ab-2bc+2a$ $(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$ $(a-b-c)^2 = a^2+b^2+c^2 - 2ab + 2bc - 2ca$

Kya ye sab use hotaa hai JEE mai ???



QUESTION [JEE Mains 2021]

If
$$a + b + c = 1$$
, $ab + bc + ca = 2$ and $abc = 3$, then the value of
 $s \cdot \theta \cdot s$
 $a^{2} + b^{2} + c^{2} + \lambda (ab + bc + ca) = l$, $(ab + bc + ca)^{2} = q$
 $a^{2} + b^{2} + c^{2} + 4 = 1$
 $a^{2} b^{2} + b^{2} c^{2} + c^{2} a^{2} + \lambda (ab^{2} c + a^{2} + b^{2} c^{2} + c^{2} c^{2} + c^{2} a^{2} + b^{2} c^{2} + c^{2} a^{2} + c^{2} a^{$

of $a^4 + b^4 + c^4$ is equal to

Given that a + b + c = 3, $a^2 + b^2 + c^2 = 5$ and $a^3 + b^3 + c^3 = 7$, then the value of $a^4 + b^4 + c^4$ is equal to

If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ then $(a + b + c)^{3} =$ $\sqrt{(3Ja)^3 + (3Jb)^3 + (3Jc)^3} = 3 3Ja \cdot 3Jb \cdot 3Jc \cdot$ abc A a+b+c=3 $^{3}Jabc$ 3abc 37.1. CBS В $(a+b+c)^3 = 27abc$. 9ac C 27abc - 43-1.

If
$$\frac{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3} = m(a+b)(b+c)(c+a),$$

where a, b, c are distinct real numbers then m is equal to

$$a^{2}-b^{2} = A$$

$$b^{2}-c^{2} = B$$

$$c^{2}-a^{2} = C$$

$$0 = A+B+C$$

$$A^{3}+B^{3}+c^{3} = 3ABC$$

$$C-a^{2} = C$$

$$0 = A+B+C$$

$$E = \frac{A^{3} + B^{3} + (3)}{P^{3} + q^{3} + 13}$$

$$E = \frac{3ABC}{3Pqr} = \frac{(a^{2} - b^{2})(b^{2} - c^{2})(c^{2} - a^{2})}{(a - b)(b - c)(c - a)}$$

$$E = (a + b)(b + c)(c + a)$$

$$(m = 1)$$

P = 9, $-P+Q+r / P+Q+r^3 = 3PQr$.

$$\sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{15}} = \int \ell^2 + (2\sqrt{3})^2 + \sqrt{5^2} + 2\sqrt{2} \sqrt{5} + 2\sqrt{2}\sqrt{5}$$

(A)
$$\sqrt{5} - 2 + 2\sqrt{3} = \int (2 + 2\sqrt{3} - \sqrt{5})^2 = |2 + 2\sqrt{3} - \sqrt{5}|^2$$

$$= 2 + 2\sqrt{3} - \sqrt{5} - \sqrt{4} - \sqrt{12}$$

$$= 2 + \sqrt{3} - \sqrt{5} - \sqrt{4} - \sqrt{12}$$

$$= \sqrt{5} + \sqrt{4} + \sqrt{12}$$

$$= \sqrt{5} + \sqrt{4} + \sqrt{12}$$

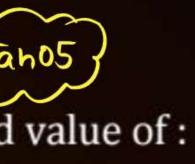
 $-\sqrt{5}-\sqrt{4}+\sqrt{12}$ D

-2.2.53 5

15

Find the square root of $10 + \sqrt{24} + \sqrt{60} + \sqrt{40}$.

If $a_1 + a_2 + a_3 + a_4 = -3$ and $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 63$ then find value of : $a_1a_2 + a_2a_3 + a_1a_3 + a_3a_4 + a_1a_4 + a_2a_4 = ?$ (where $a_1, a_2, a_3, a_4 \in \mathbb{R}$)



$$\begin{array}{ccc} & & & & a^{\circ} = 1 & (a \neq 0) \\ & & & & a^{m-m} = 1 & (a \neq 0) \\ & & & & a^{m-m} = 1 \\ & & & & a^{\circ} = 1 \end{array}$$

$$f a^{-m} = \frac{1}{a^{m}} (a \neq 0) \qquad a^{m} a^{-m} = a^{m+1}$$
$$a^{-m} = \frac{1}{a^{m}}$$

 $\star a^{1/n} = n \int a n \in \mathbb{N}, n \ge 2$.

$* (a^m)^n = a^m n$

$m+(-m)=\sigma_0=1$

$m = (am)^{\prime}m = (a^{\prime}m)m.$

ents $0^m = 0, m > 0$ $0^0, 0^{-m}$ is Not
Rule
$a^0 = 1$ (Where $a \neq 0$)
$a^1 = a$
$a^m \times a^n = a^{m+n}$
$a^m/a^n = a^{m-n}$
$a^{-m} = 1/a^{m}; (a/b)^{-m} = (b/a)^{m}$
$(a^m)^n = a^{mn}$
$(ab)^m = a^m b^m, (a^p b^q)^\alpha = a^{p\alpha} b^{q\alpha}$
$(a/b)^m = a^m/b^m$
$a^{1/n} = \sqrt[n]{a}; a^{m/n} = (a^m)^{1/n} = \sqrt[n]{a^m}$

t def.

)	
^ī =	$\left(a^{1/n}\right)^m = (\sqrt[n]{a})^m$

x=0, a=0 $a^{\times} = 1 \neq 1$ Q=1, XER $a = -1 \beta a^{\times} = 1$ $\mathcal{E}_{X:}$ $(-1)^{Y} = 1$ x=ya=1 $\alpha^{x} = \alpha^{y}$. -a=-1a=0 $(-1)^{2} = (-1)^{2}$ $(-1)^{10} = (-1)^{2}$

$(-1)^{\frac{1}{3}} = ((-1)^{\frac{1}{3}})^{\frac{1}{3}} = (-1)^{\frac{1}{3}} = (-1)^{\frac{1}{3}} = (-1)^{\frac{1}{3}} = 1.$

v'(1-) = (1-) a. 0 < v', x < a

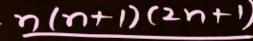
 $(1^3 + 2^3 + 3^3 + 4^3)^{-3/2} =$ $\frac{10^{-3}}{2} = \frac{\left(\frac{4(4+1)}{2}\right)^2}{2}$ $(10^2)^{\frac{-3}{2}}$ 10^{-2} В $= 10^{-3}$

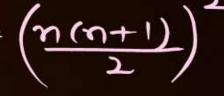
10-4

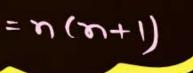
D

10-1

6 Y=1 $\sum (kr) = 2 + 4 + 6 + - + 2n = n(n+1)$ Y=1

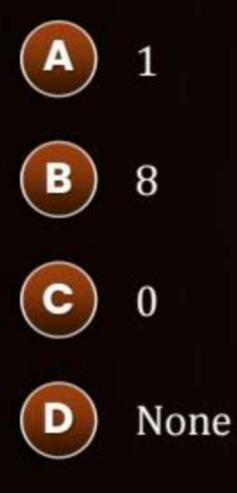


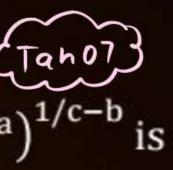




If
$$\sqrt[4]{\sqrt[3]{x^2}} = x^k$$
, then k =

The numerical value of $(x^{1/a-b})^{1/a-c} \times (x^{1/b-c})^{1/b-a} \times (x^{1/c-a})^{1/c-b}$ is (a, b, c are distinct real numbers)





$$\begin{pmatrix}
6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty \text{ times}}} = \\
\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty \text{ times}}} = \\
\sqrt{6 + x} = x \\
\sqrt{6 + x} = x \\
\sqrt{6 + x} = x \\
x^2 = x + 6 \\
x^2 - x - 6 = 0 \\
x = 3, -2
\end{pmatrix}$$

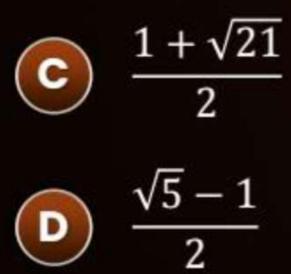
$$(C) 1$$

$$(D) \pm 3$$

t Tanos)

 $\sqrt{5 + \sqrt{5 + \sqrt{5}} + \dots \infty}$ is equal to





If a, b, c \in R and a, b, c \neq 0 such that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 6$ and $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 8$, then $\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} - 3$ is equal to

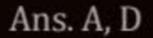
Let $a, b, c \in N(a > b)$ satisfy $c^2 - a^2 - b^2 = 101$ with ab = 72. Then which of the following can be correct?

b and c are coprime

c is an odd prime

(a + b + c) is even

a + b = c + 1



Saari Class Illustrations Retry karni Hai

No Selection $\xrightarrow{\text{TRISHUL}}$ Selection with Good Rank Apnao IIT Jao

If a, b, & c are three non zero real numbers such that $5a^2 + 4b^2 + 4c^2 - 8ab - 4ac = 0$ then the value of a/b + b/c is _____

(KTK 1)

Ans. 3

If a, b, & c are three non zero real numbers such that $2a^2 + b^2 + c^2 - 2ab - 2ac = 0$ then the value of $\frac{a+b}{c}$ is equal to _____

Ans. 2

If $x^2 + 16y^2 + 9z^2 = 4xy + 12yz + 3zx$ then find the value of $\frac{x+4y}{3z}$. (Given x, y, z $\in R_0$)

(KTK 3)

Ans. 2

If the real numbers x, y, z are such that $x^{2} + 4y^{2} + 16z^{2} = 48$ and xy + 4yz + 2zx = 24, what is the value of $x^{2} + y^{2} + z^{2}$?

(KTK 4)

Ans. 21

If x, y, z are real numbers then find the minimum value of $4x^2 + y^2 + 9z^2 - 4x - 2y - 6z + 17$.

(KTK 5)

Solution to Previous TAH

If $81x^5 + 27x^3 - 9x^2 + 50$ is divided by (3x + 2) then remainder is λ then

$$(\mathbf{A})$$

$$\frac{3\lambda-42}{10}$$
 is equal to 4

С

if $\lambda = \frac{p}{q}$ then (p + q) is divisible by 17 (where p & q are coprime)

 λ is a natural number

D
$$\left(\lambda - \frac{1}{3}\right)$$
 is divisible by 3

Ans. A, B, D

3 IF 8125+27x3-9x"+ So is divided by (3x+2) then remainder is 7 then -

P(x) = 81x5+27x3- 9x+50

$$P(-\frac{2}{3}) = \lambda$$

$$\frac{381 \times (-\frac{2}{3})^{5} + 27(-\frac{2}{3})^{3} - 9(-\frac{2}{3})^{7} + 60 = \lambda$$

$$\frac{32}{3} - 8 - 4 + 60 = \lambda$$

$$\frac{32}{3} - 8 - 4 + 60 = \lambda$$

$$\frac{32}{10} = \frac{82 - 4}{10}$$

$$\frac{32 - 42}{10} = \frac{82 - 4}{10}$$

$$\frac{32 - 42}{10} = \frac{82 - 4}{10}$$

$$\frac{32 - 42}{10} = \frac{82 - 4}{10}$$

$$\frac{82 + 3 = 85 = 5 \times 17}{10}$$

$$\frac{82}{3} - \frac{1}{3} = \frac{81}{3} = 27$$

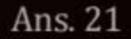
$$\frac{82}{3} - \frac{1}{3} = \frac{81}{3} = 27$$

$$\frac{82}{3} - \frac{1}{3} = \frac{81}{3} = 27$$

12 = 40 = 4

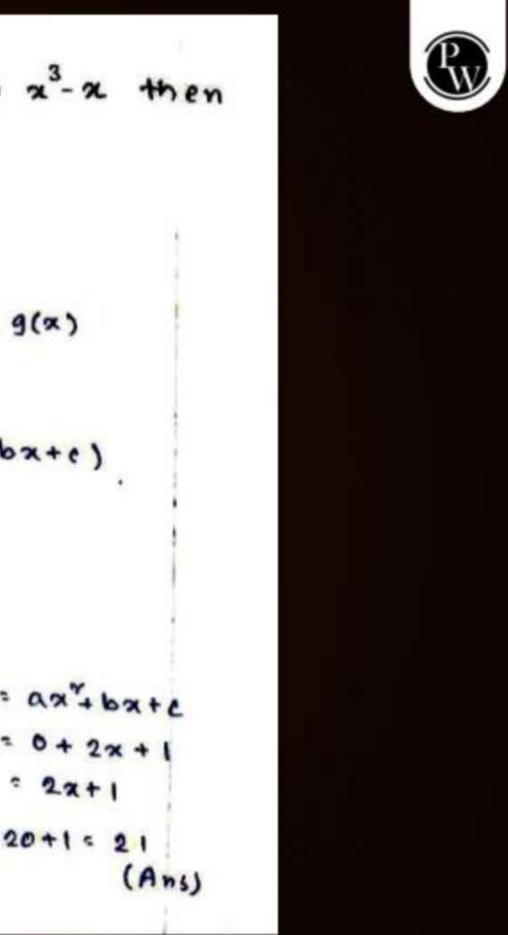
7 = 3 × 9

Let $f(x) = x^{135} + x^{125} - x^{115} + x^5 + 1$. If f(x) is divided by $x^3 - x$ then the remainder is some function of x say g(x). Find the value of g(10).

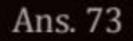


(i) Let
$$f(x) = x^{136} + x^{125} - x^{116} + x^{1} + 1$$
. If $f(x)$ is divided by
the remainder is some f^m of x say $g(x) \cdot g(10) = 9$
 $f(x) = x^{135} + x^{125} + -x^{116} + x^{5} + 1$ $(x^3 - x) = x(x + 1)(x - 1)$
 $f(0) = 0 + 0 - 0 + 0 + 1 = 1$
 $f(-1) = -1 - 1 + 1 - 1 + 1 = (-1)$ $f(x) = (x^3 - x) \Theta(x) + g$
 $f(1) = -1 - 1 + 1 - 1 + 1 = 3$ Let $g(x) = ax^7 + bx + c$.
 $f(x) = (x^3 - x) \Theta(x) + (ax^7 + bx) + c$.
 $f(x) = (x^3 - x) \Theta(x) + (ax^7 + bx) + c$.
 $f(0) = 0 + b + c = 3$
 $f(0) = c = 1$
 $f(-1) = a + b + c = 3$
 $f(0) = c = 1$
 $f(-1) = a - b + c = (-1)$
 $\therefore c = 1, a + b + c = 3$ $a - b + c = (-1)$
 $\therefore c = 1, a + b + c = 3$ $a - b + c = (-1)$
 $\therefore a = 0$ $b = 2$ $g(10) = 20$

÷



If p(x) is a polynomial of 3 degree for which p(1) = 1, p(2) = 4, p(3) = 9 then find the value of p(5) and leading coefficient be 2.



(*) If
$$p(\pi)$$
 is a polynomial of 3 degree for white
 $p(2)=4, p(3)=9$ then find the value of $p(5)$ are
coefficient be 2.
 $g(\pi)=p(\pi)-\pi^{*}$.
 $g(\pi)=p(\pi)-1=1-1=0$
 $g(2)=p(2)-4=4-4=0$
 $g(3)=p(3)-9=9-9=0$
 $g(\pi)$ reactors factors $(\pi-1), (\pi-2), (\pi-3)$
 $f g(\pi)=a(\pi-1)(\pi-2)(\pi-3)$
 $g(\pi)=2(\pi-1)(\pi-2)(\pi-3)$
 $g(\pi)=2(\pi-1)(\pi-2)(\pi-3)(\pi-3)(\pi-3)(\pi-3)(\pi$

